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a b s t r a c t

This paper describes the algorithms and functionality of a new module developed to
support overset grid assembly associated with performing time-dependent and adaptive
moving body calculations of external aerodynamic flows using a multi-solver paradigm
(i.e. different CFD solvers in different parts of the computational domain). We use the term
‘‘domain connectivity” in this paper to denote all the procedures that are involved in an
overset grid assembly, and the module developed is referred henceforth as the domain-
connectivity module. The domain-connectivity module coordinates the data transfer
between different solvers applied in different parts of the computational domain – body
fitted structured or unstructured to capture viscous near-wall effects, and Cartesian
adaptive mesh refinement to capture effects away from the wall. The execution of the
CFD solvers and the domain-connectivity module are orchestrated by a Python-based com-
putational infrastructure. The domain-connectivity module is fully parallel and performs
all its operations (identification of grid overlaps and determination of data interpolation
strategy) on the partitioned grid data. In addition, the domain connectivity procedures
are completely automated such that no user intervention or manual input is necessary.
The capabilities and performance of the package are presented for several test problems,
including flow over a NACA 0015 wing and an AGARD A2 slotted airfoil, hover simulation
of a scaled V-22 rotor, and dynamic simulation of a UH-60A rotor in forward flight. A
modification to the algorithm for improved domain connectivity solutions in problems
with tight tolerances as well as heterogeneous grid clustering is also presented.

Published by Elsevier Inc.
1. Introduction

Traditional CFD codes are often written to support a single gridding and solution paradigm. Grids fall under three main
classifications: Cartesian (structured or unstructured), structured-curvilinear (body-fitted) or unstructured (tetrahedral,
hexahedral or prismatic). Each meshing paradigm has specific advantages and disadvantages. For example, Cartesian grids
are easy to generate, to adapt, and to extend to higher-order spatial accuracy, but they are not well-suited for resolving
boundary layers around complex geometries. Structured curvilinear grids work well for resolving boundary layers, but
the grid generation process for complex geometries remains tedious and requires considerable user expertise. General
unstructured grids are well-suited for complex geometries and are relatively easy to generate, but their spatial accuracy
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is often limited to second-order, and the associated data structures are less computationally efficient than their structured-
grid counterparts.

Thus, while a single gridding paradigm brings certain advantages in some portions of the flowfield, it also imposes an un-
due burden on others. A computational platform that supports multiple mesh paradigms provides the potential for optimiz-
ing the gridding strategy on a local basis. However, integrating different meshing paradigms into a single large monolithic
code is complex and usually relegates at least one of the models to be less accurate, less optimized, or less flexible than the
original standalone solver.

This work describes an approach to mitigate these issues by using a multiple-mesh strategy that is implemented through
the use of multiple CFD codes, each optimized for a particular mesh type. It was developed for analysis of rotorcraft, but fea-
tures several enabling technologies for extension to other types of unsteady, moving-body problems. In addition to support-
ing heterogeneous grids and solvers, the software was developed to minimize the analysis burden on the user. While an
interface procedure is required for each specific solver, this interface must only be written once. Once the interface exists,
the domain connectivity software retrieves the information it needs directly from the flow solvers and the grids themselves,
so the human analyst does not need to provide input specific to each problem.

For rotorcraft analysis, the approach is to apply unstructured or body-fitted curvilinear grids near the body surface to cap-
ture complex geometry and viscous boundary layers. A short distance from the body surface, the flow is determined by a
high-order block-structured adaptive Cartesian solver that adapts time-dependently to capture wake effects. Previous work
[1,2] has addressed the development of a Python-based multi-solver infrastructure using both unstructured (NSU3D [3]) and
structured (UMTURNS [4]) near-body solvers and an adaptive Cartesian off-body solver (SAMARC). Using this high-level
framework, discrete codes can be coupled together to obtain a contiguous solution over the entire computational domain.
The Python code merely manages data pointers to pass information between the solvers and the domain connectivity pack-
age and adds negligible overhead to the analysis. Fig. 1 shows an example calculation of flow over a sphere using this ap-
proach for which both the viscous boundary layer and the shed vorticity are accurately captured.

A critical aspect of the multi-mesh/multi-solver approach is the need for data exchange between the different meshes,
which is facilitated in this work using the well-established Chimera-based overset procedure. As shown in Fig. 2, the
near-body and off-body meshes are constructed to be overlapping and the data exchange is facilitated using the domain-con-
nectivity module. The focus of the present paper is on the development of a new domain-connectivity module that can
efficiently support the overset multiple-mesh paradigm for large-scale unsteady moving-body computations.

The domain connectivity procedure entails identifying hole regions, where one grid cuts out another, and interpolating
data between the grids at boundaries, both hole boundaries and outer boundaries. Specifically, the domain connectivity pro-
cedures involve the evaluation of fringe data points (points that receive data), donor cells (points that provide data), hole
points (points that do not need to be solved) and interpolation weights. The process of identifying fringes and holes (termed
hole-cutting) can be done in one of two ways, explicitly or implicitly.

Explicit hole cutting means the hole boundaries are explicitly defined according to a representation of the underlying
component surface. Holes are cut in the background grids in ‘‘cookie-cutter” fashion using this representation. Some of
the earliest practical explicit hole-cutting techniques proposed by Meakin [5] for OVERFLOW applied analytic shapes to sur-
round the solid component. This approach was later refined to use a surface ray-casting [6], the approach currently used in
Fig. 1. Unsteady flow over a sphere at Re = 1000 using the multiple-solver approach. The NSU3D unstructured solver is used near the body surface, the
high-order Cartesian AMR solver SAMARC is used in the field, and data are interpolated between the solvers using Chimera-based interpolation [1].



Fig. 2. Overset near/off-body gridding. Unstructured or curvilinear grids to capture geometric features and boundary layer near-body surface, adaptive
block-structured Cartesian grids to capture far-field flow features.
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OVERFLOW [7] today. Petersson developed a similar ray tracing approach in the CHALMESH [8] software, an overset grid
generator for the Overture [9] package. Explicit hole cutting has seen widespread use for practical applications but has
the drawback that it requires additional inputs and steps to form the explicit hole boundary during the overset assembly
process. Implicit hole cutting means there is no explicit definition of the hole boundary. Instead, the hole is computed purely
by comparing volume grid information and flow boundary conditions, Whichever grid has the best resolution, referred to as
resolution capacity, cuts a hole in all other grids that occupy the same region in space. Implicit hole cutting method was first
demonstrated by Chessire and Henshaw [10] in the CMPGRD package, an early predecessor to Overture. The Ogen [11] soft-
ware in Overture [9] uses it today. The PEGASUS5 [12] package was one of the first to demonstrate implicit hole cutting for
practical 3D static-grid applications. Lee [13,14] demonstrated it for moving-grid rotorcraft applications. The benefit of im-
plicit hole cutting is that it is completely automated; it does not require any definition of the hole boundary apriori. The
drawback is that it tends to be complicated to program and more computationally demanding than explicit hole cutting.
We note following Lee [14] that implicit hole cutting methodology, by itself, does not tag the portions of the grids inside
the boundaries of a solid body as hole-points. It can only identify the fringe region surrounding the solid body. We refer
to the elimination of the points inside solid bodies as minimum hole-cutting. In our methodology, we include the capability
to perform minimum hole-cutting as well. Additionally, our algorithm, unifies both donor search and minimum hole-cutting
in to one single procedure obviating the need for separate procedure outlined by Lee [14].

Other notable domain connectivity packages include SUGGAR/DiRTlib [15], CHIMPS [16], BEGGAR [17], and FASTRAN
[18]. These packages (including those mentioned in the paragraphs above) all have their merits and drawbacks. Most are
intended to be used within a single solver and do not have the capability to support multiple solvers. Most are intended
for exclusively structured or exclusively unstructured grids; they do not efficiently handle a mix of grid types. Many are
not parallel, which limits their applicability for large-scale problems on HPC systems.

In this work we seek to develop a domain connectivity package that functions in the Python-based multi-solver paradigm,
efficiently exploiting the mix of structured and unstructured grid types. It will employ implicit hole cutting for purposes of
automation but, unlike most of the earlier implementations of implicit hole cutting, it is implemented on distributed mem-
ory parallel systems using MPI-based communication in order to take advantage of HPC systems widely used for CFD today.

The new domain-connectivity module developed as part of this work is termed PUNDIT, which is an acronym for Parallel
UNsteady Domain Information Transfer. As outlined earlier, our objective is to create a package which is modular, parallel,
and supports efficient automated domain connectivity operations for all participant grid types (unstructured, structured cur-
vilinear and adaptive Cartesian).
2. Methodology

The coupling of the near-body solver, off-body grid manager, off-body solver, and domain-connectivity module is accom-
plished through a Python-based infrastructure with emphasis on preserving the modularity of the participating solvers. In
addition to the advantages in efficiency and ease in code development, coupling existing mature simulation codes through
a common high-level infrastructure provides a natural way to reduce the complexity of the coupling task and to leverage the
large amount of verification, validation, and user experience that typically go into the development of each separate model.
The infrastructure discussed here currently couples the following codes through a Python infrastructure: (a) the parallel
NSU3D code [3] for the unstructured near-body solver, (b) the parallel UMTURNS code as the structured near-body solver,
(c) the SAMRAI framework [19] for the off-body Cartesian grid generation, adaptation, and parallel communication, (d) the
serial high-order ARC3DC code for solution on the Cartesian blocks, and (e) the domain-connectivity module (PUNDIT).
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Brief descriptions of the implementations of the first four components are outlined below. More detailed descriptions of
the implementations as well as performance statistics and validation are described in more detail in Refs. [1,2]. This paper is
devoted to detailed descriptions of algorithms and implementation of the domain-connectivity module (PUNDIT). The infra-
structure which integrates the simulation capabilities of all the modules mentioned above is called HELIOS (Helicopter Over-
set Simulations) and is developed under the DoD HPC HI-ARMS program. Because of the modular development approach
being taken, the individual components of HELIOS, such as the solvers and the domain connectivity package, can be used
independently for moving body problems other than rotorcraft.
2.1. Python infrastructure

Python-based computational frameworks have been developed previously by several researchers [20] as a means of cou-
pling together existing legacy codes or modules. Such a framework has a number of advantages over a traditional monolithic
code structure: (1) it is easier to incorporate well-tested and validated legacy codes rather than to build the capabilities into
an entirely new code, (2) there is less code complexity in the infrastructure itself, so maintenance and modification costs are
less, and (3) it is easier to test and optimize the performance of each module separately, often yielding better performance
for the code as a whole. Essentially, Python enables the legacy solvers to execute independently of one another and reference
each other’s data without memory copies or file I/O. Further, the Python-wrapped code may be run in parallel using pyMPI or
myMPI, with each of the solvers following its native parallel implementations. Further details of the Python infrastructure
used here can be found in [1,2].
2.2. Flow solver modules

Well-established legacy codes are employed for all of the independent modules in this study. For the unstructured solver
in the near-body region, we employ the NSU3D [3] code, which is an implicit node-centered Reynolds-Averaged Navier–
Stokes (RANS) code capable of handling arbitrary unstructured mesh elements. In addition, we also use a curvilinear struc-
tured mesh solver for the near-body region, namely the UMTURNS code, which is also an implicit RANS solver. For the Carte-
sian grids in the off-body region, we utilize a Cartesian grid derivative of the well-known ARC3D [21] code, referred to here
as ARC3DC. The ARC3DC code employs third-order temporal discretizations using a multi-stage Runge–Kutta time-stepping
framework and is capable of up to fifth-order accurate spatial discretizations. Further, the Cartesian grids in the off-body are
automatically generated and managed for parallel execution by the SAMRAI infrastructure [19]. As mentioned earlier, these
codes or modules are combined together using a Python-based framework that orchestrates the execution of these modules
and the associated data transfers.
2.3. Meshing paradigm

The meshing paradigm consists of separate near-body and off-body grid systems. The near-body grid typically extends a
short distance from the body, sufficient to contain the boundary layer. This grid can be a structured curvilinear grid or an
unstructured tetrahedral or prismatic grid that has been extracted from a standard unstructured volume grid or generated
directly from a surface triangulation using hyperbolic marching. The reason for using curvilinear or unstructured grids in the
near-body region is to properly capture the geometry and viscous boundary layer effects, which are difficult or impossible to
capture with Cartesian grids alone. We further note that either structured or unstructured grids will work equally well in the
near-body region from the point of view of our infrastructure. Away from the body the near-body grid solution is interpo-
lated onto a Cartesian background mesh with the aid of the domain connectivity algorithm. This transition normally occurs
at a distance wherein the sizing of the near-body grid cells is approximately commensurate with the sizing of the Cartesian
mesh in the off-body region.

The off-body grid system consists of a hierarchy of nested refinement levels, generated from coarsest to finest. In
the Structured Adaptive Mesh Refinement (SAMR) paradigm [22], the coarsest level defines the physical extents of
the computational domain. Each finer level is formed by selecting cells on the coarser level and then clustering the
marked cells together to form the regions that will constitute the new finer level. Solution-based refinement progresses
as follows: physical quantities and gradients are computed at each Cartesian cell using the latest available solution and
those cells that hold values deemed to require refinement are marked. The marked cells are then clustered to form the
new set of patches that constitute the next finer level. The process is repeated at each new grid level until the
geometry and solution features are adequately resolved. We note that this entire procedure is automated within the
software and no user intervention is required. The procedure of adaptive mesh refinement is graphically illustrated
in Fig. 3.

An example of the overset near-body/off-body meshing strategy is given in Fig. 2, which shows the meshes for flow com-
putations over a helicopter fuselage. Here, the mixed-element unstructured near-body grid envelops the fuselage, while a
multi-level Cartesian off-body grid extends from the outer boundary of the near-body grid to the far-field boundary. The
two sets of meshes overlap in the so-called fringe region, where data are exchanged between the grids.



Fig. 3. Block structured AMR grid composed of a hierarchy of nested levels of refinement. Each level contains uniformly-spaced logically-rectangular
regions, defined over a global index space.

J. Sitaraman et al. / Journal of Computational Physics 229 (2010) 4703–4723 4707
2.4. Overset methodology

The overall solution procedure for the overset meshes is as follows. At each iteration step, the solutions of the fluid equa-
tions in each mesh are obtained independently with the solution in the each fringe region being specified by interpolation
from the overlapping ‘‘donor” mesh as a Dirichlet boundary condition. At the end of the iteration, the fringe data are ex-
changed between the solvers so that the evolution of the global solution is faithfully represented in the overset methodology.
Further, if one or more of the meshes is moving or changing, the fringe regions and the interpolation weights are recalculated
at the beginning of the time step. This procedure is repeated for each iteration step until solution convergence is attained in
both the near- and off-body meshes.

2.5. Domain connectivity module (PUNDIT)

For each solver, the solution at the fringe cells is obtained by interpolation from the overlapping ‘‘donor” mesh. The do-
main connectivity module (PUNDIT) is responsible for determining the appropriate interpolation weights for each fringe
point. Further, in the case of multiple overlapping meshes, PUNDIT must also identify one mesh as the donor for each fringe
point in each mesh. For static meshes, these operations are done once, at the beginning of the computation, while, for the
more general case of moving or adapting meshes, the determinations of donors and weights has to be repeated within
the time-stepping or iteration loop.

PUNDIT adopts the implicit hole cutting procedure followed by NAVAIR-IHC [13]. The core idea of this approach is to re-
tain the grids with the finest resolution at any location in space as part of the computational domain and interpolate data at
all coarser grids in this region from the solution on the fine grid. This results in the automatic generation of optimal holes
without any user specification as in the case of explicit hole-cutting. Moreover, the implicit hole-cutting procedure produces
an arbitrary number of fringe points based on mesh density compared to traditional methods which use a fixed fringe width
(usually single or double). The critical parameter that quantifies the quality of a grid cell or node is termed as ‘‘resolution
capacity”. PUNDIT nominally uses the cell volume as the resolution capacity for a grid cell and the average of cell volumes
of all associated grid cells as resolution capacity for a grid node. A modification to this procedure to account for wall prox-
imity is described in Section 5. In addition, PUNDIT separates the near-body to near-body and near-body to off-body domain
connectivity procedures to facilitate automatic off-body grid generation and to improve efficiency [23].

Following are the steps followed by PUNDIT to determine the domain connectivity information in a parallel environment.
Partitioning of grid and solution data is assumed to be performed using an appropriate solver-based load balancing scheme
before these steps are executed.

1. Registration: On each processor, the flow solvers register grid and solution data pointers for every grid block (both near-
body and off-body) with PUNDIT. The grid data consist of the Cartesian coordinates and cell to node connectivity. The
solution data are composed of flow variables at each of the grid nodes.

2. Profiling: PUNDIT profiles each of the grid blocks and forms meta-data representations to facilitate faster donor search
operations. The main procedures that are executed in this step are:
� Minimal bounding box computation: Oriented bounding boxes are constructed instead of axis-aligned bounding boxes

to minimize the search space (Fig. 4(b)).
� Division of minimal bounding box in to vision space bins: The vision space bins are smaller Cartesian boxes within the

bounding box. The size of the vision space bins is determined by dividing the volume of the bounding box by the total
number of cells contained in it (Fig. 4(c) and (d)).

� Generation of a cumulative fill-table: The cumulative fill table is a bin-wise reordering of the cell indices that are con-
tained in each vision space bin. They facilitate fast identification of all cells contained within each vision space bin.



Fig. 4. Oriented bounding boxes and vision space bins that are created during preprocessing to accelerate donor search processes.
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� Estimation of element resolution capacity: Element resolution capacity is the grid quality measure for each cell and
each grid node. Nominally, cell volumes are used as resolution capacity for each grid cell and average of all the asso-
ciated cell volumes is used as the resolution capacity for each grid node. A smaller value of resolution capacity indi-
cates better grid quality, or improved solution accuracy. A method to modify resolution capacity to retain cells near a
solid wall in the grid containing the wall is described in Section 5.

� Evaluation of cell-to-cell connectivity: The containment search strategy uses a gradient based approach involving walking
from cell to cell until the containment criteria are satisfied. Cell-to-cell connectivity is required to aid in this process. Since
the input grid data consist of only cell-to-node connectivity, the cell-to-cell connectivity is evaluated as a preprocessing
step. We utilize hash table based sorting for rapid evaluation of cell-to-cell connectivity from cell-to-node connectivity.
Nonetheless this step still remains the most performance intensive among all the profiling operations. However, if the
mesh topology is preserved, this step needs to be performed only once even for unsteady moving mesh problems.

3. Near-body to near-body domain connectivity: In this step the domain connectivity operations are performed between all
near-body blocks on all processors. The sequence of the operations is as follows:
� Bounding box exchange and intersection checks: The bounding boxes constructed in each processor in the profiling step

are gathered in every processor. Each processor checks for intersection of bounding boxes of its grid blocks with the
global set of bounding boxes, which aids in identifying candidate donor grid blocks. The bounding box intersection
checks are optimized such that detection of intersection as well as identification of vision space bins containing poten-
tial receiver grid points are simultaneously processed. The identification of vision space bins accelerates the identifi-
cation of potential receiver grid points as only those nodes which belong in these vision space bins are checked for
containment in the donor bounding box.

� Communication of potential receivers: Following the intersection checks a communication packet is set up and
exchanged between all the processors. The communication packet consists of a list of coordinates of all potential recei-
ver grid points and their resolution capacity organized such that the donor search can be directed to the appropriate
grid block in the candidate processor. Upon completion of this communication, each grid block in each processor will
form a list of points for which it needs to locate donor cells.

� Donor search: Fig. 5 shows a graphical illustration and flow chart of the donor search algorithm outlined below. The
donor search algorithm proceeds as follows: For any potential receiver point, a localization is performed by locating
the vision space bin that contains it. This is a trivial operation since the vision space bins follow a Cartesian structure
within the oriented bounding box. Subsequently a spiral search (i.e. vision space bins are tagged along an outward
spiral beginning at the initial location) is performed until a vision space bin with at least one grid cell centroid is
located. This grid cell is chosen as the seed for initiating the so-called ‘‘stencil walk process”. Fig. 6 graphically illus-
trates the stencil walk process using a two dimensional analogy. A line (termed stencil walk path) is created by con-
necting a point inside a potential donor cell (centroid for the initial cell and face intersection point for subsequent
cells) with the receiver point. A check is made to determine if this edge intersects any of the faces of the cell. If an
intersection is located, the cell which forms the neighbor at that face is chosen as the next potential donor cell. This
procedure continues until a cell with no intersections is located which would be the donor cell for the given point. For
a face which shows intersection but has no neighbor (i.e. a boundary face), a check is conducted using the spiral search
technique to check if the edge intersects any other boundary faces in the neighborhood. If an intersection is found then
stencil walking proceeds to the cell which owns that boundary face. This procedure addresses complex grid bound-
aries such as those found in partitioned unstructured grids or thin trailing edges. If a donor cell is not located, the
receiver point is pronounced to have no donor cell in the current grid block.
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Fig. 5. Flowchart of donor finding algorithm that uses vision space bin based localization and stencil-walk based search.

Fig. 6. Illustration of the stencil walk search which locates donor cells that satisfy containment.
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� Minimum hole cutting: Hole points are those which are located inside a solid body and hence do not need to be solved
or interpolated. Hole points are located as part of the donor search process. The hole-cutting logic is invoked whenever
the donor search method terminates with a boundary face penetration. If the final boundary face that the stencil walk
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path intersects is a wall boundary face, the receiver point will be tagged as a hole point (i.e. it is inside the solid body).
A two dimensional analogy of this procedure is graphically illustrated in Fig. 7. In this case the donor search proceeds
along the chosen path and finally intersects a wall boundary face indicating that the receiver point is indeed inside the
solid body. Once a point is tagged as a hole by a near-body grid partition, it can be tagged as a fringe point only by
another grid partition from the same near-body grid. Hence it can no longer receive data even if a suitable donor is
found by another grid partition (belonging to another near-body grid or a off-body block). This ensures that the vol-
ume within the body is blanked for the nodes in all grids which overlap within the body.

� Generation of the communication table: Once a list of donor cells is obtained in every processor, it is communicated back
to the processors that requested the donor search. Every processor then performs an evaluation of potential donor
cells, such that the donor of the best resolution capacity is chosen for every receiver grid point. Indices of all the poten-
tial donors that are not acceptable are communicated back to the appropriate donor processors such that they can
update their donor list. Additionally a quality check is performed to make sure that no donor cell has a receiver point
as its vertex. If such a cell is located it is deleted from the donor list and this information is communicated to the recei-
ver processors who adjust their receiver lists accordingly as well. This process rigorously establishes donor quality
since all donors will be composed of only nodes which are being solved and are not themselves receiver points.
The final product of this step is a communication table consisting of a list of donor cells and receiver points in each
processor synchronized for data interpolation.

4. Off-body grid generation: The adaptive Cartesian mesh generation is dictated by the resolution of the near-body meshes at
their boundaries. In order to achieve this, a list is generated which is composed of all outer boundary points of near-body
meshes across processors that did not find a near-body donor in the previous step. This list is communicated to the off-
body grid manager (SAMRAI) which automatically generates/adjusts nested Cartesian meshes such that the resolution is
commensurate at the near-body boundaries.

5. Off-body to Near-body connectivity: First valid donors (i.e those with better resolution capacity) for all points in near-body
grid blocks are searched in the off-body Cartesian blocks. This search process is extremely efficient because of the isotro-
pic nature of the Cartesian blocks and the global grid indexing followed by the off-body grid manager. A donor Cartesian
cell can be located in just a single step. In addition, this process identifies all the Cartesian blocks which might contain
potential receiver points. Following this, valid donors in the near-body grids are searched for all potential off-body grid
points using the same search process that was outlined for the near-body to near-body domain connectivity. Once the
donors and receiver points are located for both the off-body and near-body grids, a communication pattern is followed
which updates the communication tables that synchronize the donor and receiver lists in each processor. Donor quality
is again guaranteed by removing low quality donors and their corresponding receivers from the communication tables.
Fig. 7. Illustration of the hole cutting methodology using wall boundary face penetration criteria
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Once the communication tables are finalized, the interpolation weights for each grid node of each donor cell in the donor
list are computed. Tri-linear basis functions are used for data interpolation and the interpolation weights are computed
using a Newton–Raphson procedure.

6. Data interpolation: Data are interpolated in a three step process. The first step consists of populating a communication
buffer using the solution data and the donor list from the communication tables. These data buffers are exchanged
between processors through inter-processor communication in the second step. In the third and final step the solution
data are updated in each processor based on the receiver list from the communication tables. In contrast to many of
the existing domain connectivity solvers, PUNDIT minimizes the communication overhead by maintaining the interpola-
tion weights in the host processor. The client processor only receives solution data and is capable of assigning them
appropriately because of the synchronization in communication tables. Moreover, interpolation weights are evaluated
only for the final list of donors, minimizing the amount of floating point operations. In order to support interfacing of solv-
ers which follow different non-dimensionalizations for flow variables, PUNDIT maintains non-dimensionalizing factors
for each flow variable from each participant solver. The data buffers that are exchanged are in the dimensional form
and appropriate non-dimensionalization is applied at the update step based on the factors provided by each participant
code. It is worth noting that the implementation of data interpolation is quite general and does not impose any restriction
on the type or number of flow variables.

3. Software verification and application results

We present results using PUNDIT within the flow solver package HELIOS for several examples. The results section is or-
ganized as follows: first, test cases for interpolation accuracy and scalability are presented. Then, application results are pre-
sented which demonstrate the use of the software for adapting and moving body meshes. The first result is a NACA0015 fixed
wing test case which demonstrates the advantages of adaptive grids and higher-order methods for wake capturing. The next
set of results illustrates the capability of PUNDIT to perform domain connectivity operations which automate hole cutting
and generate optimal overlaps. The domain connectivity solutions are shown for the AGARD A2 test case (NHLP-2D slotted
airfoil) in steady and unsteady motion. Following that we present results for rotorcraft simulations for the 1/4th scaled V-22
and full scale UH-60A rotors. Additional application results are presented in Ref. [24].

3.1. Interpolation accuracy

All the polyhedra that are common in unstructured mixed-element meshes (tetrahedra, pyramids, prisms and hexahedra)
are supported in PUNDIT. Tri-linear basis functions are used to perform data interpolation inside each of these polyhedra.
The accuracy of interpolation was verified by constructing unstructured meshes in a unit cube of incremental resolutions.
PUNDIT is used then to perform search and interpolation for a random set of one million points distributed in the unit cube.
The data at the grid nodes of the unstructured grid are set up using a set of chosen test functions listed in Table 1. The inter-
polated values at each of the random points are then correlated with the exact test function values to estimate the interpo-
lation error (it is computed as the infinity norm kek1 :¼ maxðje1j; . . . ; jenjÞ, where ei ¼ fi � f exact

i ) between corresponding
values. Fig. 8 shows the variation of interpolation error with improving resolution. For linear test functions, the tri-linear
interpolation gives exact solutions within machine precision. For a non-linear test function, interpolations in all types of
polyhedra show 2nd order accuracy. Interpolation accuracy is also verified to be 2nd order for a test function that uses
the Lamb–Oseen line vortex solution. We note that any point, that got a incorrect donor or did not get a donor (it will retain
its degenerate function value of zero), will pollute the interpolation error norm and degrade the order of accuracy. Therefore,
the 2nd order accuracy verified in Fig. 8, also verifies the robustness of the search algorithm in locating the correct donors for
all of the random set of points.

3.2. Scalability Studies for UH-60A and TRAM Rotors

The performance of the domain-connectivity module is studied by varying the number of processors used for program
execution. Note that partitioning of the grid data is handled by flow solvers and PUNDIT operates on this partitioned grid
data. Fig. 9 shows the speedup in wall-clock time with increasing number of processors. Three sets of grid systems are stud-
ied to calibrate scalability. The TRAM grid system consists of 0.8 million near-body nodes and 5.1 million off-body nodes. The
Table 1
Definition of test functions used for verification of interpolation accuracy

Linear test function f ðx; y; zÞ ¼ xþ yþ z
Non-linear test function f ðx; y; zÞ ¼ cosðxÞcosðyÞcosðzÞ
Lamb–Oseen line vortex exact

solution for velocity
~f ð~rÞ ¼ C

2ph ð1� e�rh2
Þêh where C is the circulation strength,~r is the position vector, h is the orthogonal distance

from~r to the axis of the vortex and êh is the vector orthogonal to the plane containing~r and the axis of the
vortex
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error variation for a non-linear test function and subplot (c) shows error variation for the Lamb-vortex solution.

Fig. 9. Scalability of PUNDIT with increasing number of processors for TRAM and UH-60A datasets.
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coarse UH-60A grid system is composed of 1 million near-body nodes and 11 million off-body nodes. The fine UH-60A grid
system contains 4.6 million near-body nodes and 28 million off-body nodes. More details on these test cases are described in
the application results Sections 3.6 and 3.5. Good linear scalability was observed for all three cases up to 12 processors. Be-
yond that the scalability drops off depending on grid size. For larger mesh systems such as the fine grid for UH-60A, scala-
bility begins to drop-off at about 32 processors, while for the TRAM rotor it starts to drop much earlier at about 12
processors. The reason for scalability drop-off is the load imbalance created by non-optimality of solver based partitioning
for domain connectivity procedures. Redistribution of the computational work for searching donors evenly after an initial
evaluation of donor processors could be an approach to mitigate this problem (for example the ‘‘rendezvous” approach
described in [25]).



J. Sitaraman et al. / Journal of Computational Physics 229 (2010) 4703–4723 4713
3.3. Flow Over NACA0015 Wing

The multi-code approach is used to study the flow-field over a NACA 0015 rectangular wing. The primary objective of this
computation is to validate the multi-code simulation capability for a high-Reynolds number turbulent external flow prob-
lem. The experimental data used for validation are those measured by McAlister et al. [26]. The wing geometry is a rectan-
gular planform with a square tip and an aspect ratio of 3.3. The test point for which validation results are presented is at the
following operating condition: M ¼ 0:1235; Re ¼ 1:5e6; a ¼ 12�. For this case, computations are performed in the near-
body region using the UMTURNS flow solver using structured curvilinear meshes. The wing is modeled in the full-span con-
figuration. The Spalart–Allmaras turbulence model is used for RANS closure.

Fig. 10 shows the domain connectivity solution obtained for the NACA0015 grids. Sections of the grid system in the X–Y
plane and X–Z plane are shown. The implicit domain connectivity algorithm employed not only produces optimal overlap
but also ensures commensurate grid spacing of off-body and near-body computational domains at regions of overlap. The
pressure distributions obtained from the predictions are compared with measured experimental data in Fig. 11. Fair agree-
ment can be noted between the measurement and prediction at all the span locations, although the leading edge suction
peak is consistently under-predicted, This may be attributed to wind-tunnel wall effects which are not modeled in the anal-
ysis presently.
Fig. 10. Domain connectivity solutions with adaptive Cartesian grids for steady flow over a NACA0015 wing at M ¼ 0:1235; a ¼ 12� and Re ¼ 1:5e6 using
HELIOS.

Fig. 11. Prediction of pressure distributions for steady flow over NACA0015 wing at M ¼ 0:1235; a ¼ 12� and Re ¼ 1:5e6 using HELIOS.



Fig. 12. Prediction of steady flow over NACA0015 wing at M ¼ 0:1235; a ¼ 12� and Re ¼ 1:5e6 using HELIOS; Predicted tip-vortex trajectory and
comparison of predicted swirl velocities with experimental data.
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Fig. 12 shows the evolution of the vortex structures from the tip of the wing. The flowfield is dominated by the presence of
the vortex sheet which rolls up into a strong tip vortex quite close to the wing. This tip vortex remains coherent up to about
15 chords behind the wing and then begins to break down in to smaller structures. Vorticity magnitude is used as the mesh
adaptation criterion for the off-body solver. The meshes represented in the figure show four levels of adaptation. It can be
observed that the mesh system is able to track the vorticity and automatically adapt to regions of high vorticity (around the
area of tip vortices). The figure also shows comparison of swirl velocities predicted at the tip-vortex locations with measured
experimental data. The peak magnitudes are under predicted by about 20% which is consistent with the under-prediction of
the leading edge suction peaks. However, the vortex shows minimal diffusion because of numerical dissipation. The use of a
5th-order accurate numerical scheme (6th-order central difference with 5th-order dissipation terms) in the off-body solver
in conjunction with adaptive Cartesian grids facilitates the improved resolution of the tip vortex structure. This test case
illustrates how the domain-connectivity module can be used with an adaptive grid solver to capture localized flow features
in the solution.

3.4. AGARD A2 slotted airfoil test case

This section illustrates the capabilities of PUNDIT for the AGARD A2 (NHLP 2D slotted airfoil) test case in static and dy-
namic conditions. Although topologically simple, this problem is challenging for computation of domain connectivity be-
cause of multiple overlapping meshes in close proximity. In particular, when the flap and slat are fully retracted, there is
a very narrow gap between the moving parts and the stationary airfoil body. For this case, there are independent grids
for the flap, slat, and main airfoil body, plus a background grid that extends to approximately 10 chords around the airfoil.
For this test case, the UMTURNS code was used to calculate the flow solution in all four grids. This slotted airfoil is one of the
well-established cases for validation of CFD codes [27,28].

The experimental data for this case are obtained from the electronic supplement of the AGARD 303 report [29,30]. Only
static data are available in the supplement. The surface pressure distributions obtained by the computations and their com-
parison with the experimental data for the 4� angle of attack case are shown in Fig. 13. Excellent agreement can be noted in
the suction peaks and chordwise variation of pressure coefficients for all three elements of the slotted airfoil. This validation
study provides confidence in the accuracy of the domain-connectivity module.

Fig. 14(a) shows the original overlapping meshes that describe the geometry of the slotted airfoil problem. Fig. 14(b) and
(c) shows the detail of the leading and trailing edge section which contain regions which have three overlapping meshes.
Finally, Fig. 14(d) and (e) shows the results after performing the domain connectivity operation. In these figures only the
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Fig. 14. Domain connectivity operations for NHLP airfoil-flap-slat test case using PUNDIT.
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solver points are shown. It can be noticed that at the solver point boundaries the grid resolutions of all overlapping meshes
are commensurate with each other which improves the quality of data interpolation. In addition the amount of overlap is
optimized, which in turn minimizes the amount of double solving and redundancy in the flow solution.

Fig. 15 shows the contours of streamwise momentum near the leading edge slat and trailing edge flap. The continuity of
the contours across the mesh boundaries illustrates the quality of data interpolation achieved by maintaining optimal con-
nectivity. Data interpolation between mesh cells and nodes of differing resolution capacity often causes large, non-physical
oscillations in contours of flow variables at grid interfaces.

Following the static computations, calculations were performed under dynamic conditions to illustrate the utility of the
domain-connectivity module for moving body problems. The flap and slat were cyclically oscillated at a 1 Hz frequency for
two cycles with 8000 time steps per cycle. Although validation data for the flow solution are not available for the dynamic
case, the performance of the domain connectivity software can be qualitatively shown. This type of problem demonstrates
the power of the implicit hole cutting procedure. For the computation, the flap and slat grids were translated and rotated



Fig. 15. x-momentum contours of flow solutions for NHLP airfoil-flap-slat test case using PUNDIT and UMTURNS; conditions are M ¼ 0:197; a ¼
4�; Re ¼ 3:52e6

Fig. 16. AGARD A2 airfoil grids with flap and slat fully retracted after domain connectivity operation. The thick lines represent the boundaries of the grids
before blanking.
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incrementally at each time step and the domain connectivity re-calculated with the new grid coordinates. The airfoil body
and background meshes were stationary. As the flap and slat approach the airfoil body, an increasing number of grid points
become hole points and background points become solver points. When fully retracted, the gaps between the airfoil body
and the control elements are very thin, but PUNDIT is able to perform the hole cutting reliably and automatically without
any input from the user, see Fig. 16. Explicit hole cutting for a complex shape with such a tight gap would be challenging
and would require significant user expertise and effort.

For a sinusoidal oscillation, the velocity of the flap and slat are highest when they are 50% deployed. Fig. 17 shows the
streamwise momentum solution for the airfoil with the flap and slat in the same position while retracting and deploying.
The large orange and red areas on the upper surface represent the flow accelerating over the airfoil1. Because of the lag
in the unsteady lift, the air is moving faster over the airfoil as the elements retract than as they deploy.

3.5. Hover simulation of TRAM rotor

Hover simulation for the TRAM (Tilt Rotor Aeroacoustics Model, a 1/4th scaled V-22) rotor was performed using the HE-
LIOS infrastructure with PUNDIT for domain connectivity. The near-body solver used for this simulation is the unstructured
NSU3D code.

Fig. 18 illustrates the mesh system and connectivity solution and Fig. 19 shows flow solution obtained for this test case.
This test case demonstrates the capability of PUNDIT to handle multiple unstructured meshes.

The TRAM mesh system consists of three unstructured grid blocks generated by rotating and combining a single blade
unstructured mesh. PUNDIT performs domain connectivity between these grid blocks first and determines the resolution
1 For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.



Fig. 17. AGARD A2 airfoil solutions with the flap and slat in mid-motion. In the upper figure, the elements are retracting; in the lower figure, they are
deploying.

Fig. 18. Mesh system and domain connectivity for 1/4th scaled V-22 (TRAM) rotor using HELIOS; Plots illustrate grid overlap and hole geometry.
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Fig. 19. Flow solutions for 1/4th scaled V-22 (TRAM) rotor using HELIOS; Plot illustrates dynamic mesh adaptation to flow features.
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and geometry requirements for the off-body meshes. The off-body mesh generation is performed subsequently such that the
resolution of the grid cells near the outer boundaries of near-body meshes is commensurate with the off-body grid cells in
that region. Consequently PUNDIT performs the domain connectivity solution between the off-body and near-body systems
and determines the off-body and near-body computational domains. The off-body computational domains are shown over-
lapped with near-body meshes to illustrate the extent of overlap created. In addition the off-body domains are shown by
themselves to illustrate the hole geometry created by the implicit hole-cutting procedure. Overall, it can be observed that
PUNDIT is capable of producing optimal domain connectivity solutions for the mesh system used in this case, even at the
center of the rotor where there are multiple overlap regions. It is worth noting that an explicit hole cutting methodology
needs sufficient user intervention to make the appropriate hole cuttings for a mesh system such as this, especially at the
overlap regions.

The flow solution obtained from the hover simulation, shown in Fig. 19, illustrates the dynamic adaptation of the off-body
grid system to the tip vortex structure. The solution slice shows contours of downwash momentum superimposed on the
grid system. Large gradients of downwash indicate a larger presence of vorticity as observed in the tip regions where the
mesh density is automatically increased. Note that domain connectivity is performed on the fly in this simulation after each
off-body grid adaptation step.

3.6. Moving mesh computations for rotor aeromechanics

The last case shown is the moving mesh problem for the UH-60A helicopter in forward flight. The meshes used for this
problem are shown Fig. 20. Fig. 20(a) shows the grid system with a curvilinear C–O type topology (near-body) overlapped by
a Cartesian mesh (off-body). The flow solutions for the near-body grids are performed by the UMTURNS code and those for
the off-body grids are performed by the SAMARC code. Fig. 20(b) and (c) shows sections along the z ¼ 0 plane and x ¼ 0 plane
for the entire grid system illustrating the computational domains (solver points) in the near- and off-body regions. The prob-
lem includes grid deformation to account for blade elasticity as well as rigid body rotation of the near-body meshes around
the rotor shaft axis. Prescribed elastic deformations which are obtained from previous CFD/CSD computations [31] are used
for verification of the methodology. Since the near-body meshes are moving, the domain connectivity has to be performed at
every time step. The domain connectivity procedures required about 5% of the total time taken for a time step. Computations
were conducted on 32 processors, which is the scalability limit of PUNDIT for this problem.

Fig. 20(d) shows the contours of the z-momentum (downwash) for the flow solution obtained. The vorticity shed from the
rotor blades induces the downwash observed in the figure. During the advancing azimuth the aerodynamic loading towards
the tip of the blades becomes negative causing them to produce much less downwash compared to the retreating side where
the aerodynamic loading is positive. The downwash distribution is also an indicator of the vortex wake geometry shed from
the rotor blade; large gradients indicate the presence of strong vortex structures. A comparison of aerodynamic loading (sec-
tional lift and pitching moment at 86% radial station) is shown in Fig. 20(e) which compares favorably with the measured
flight test data [32].

4. Performance data for test cases presented

Table 2 summarizes the performance data of the domain connectivity procedure for the test cases that were presented in
this paper. The time presented in the table represents the actual wall-clock time that elapsed between different operations,



Fig. 20. Mesh system, domain connectivity and flow solution for aeroelastic simulation of UH-60A rotor using HELIOS; Plots illustrate grid overlaps, hole
geometry and comparison with measured flight test data.
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such as domain connectivity procedures and near and off-body flow solutions. Time accurate computations were performed
for all these cases and timings are provided for one time step of unsteady flow solution. In all the cases shown, twenty sub-
iterations were used in the near-body solver to reduce the unsteady flow residual by two orders of magnitude compared to
its initial value. The off-body flow solution is on average an order of magnitude faster than the near-body flow solution. This
is primarily because of two reasons: (1) lean cache-friendly data structure and flow solution procedures for isotropic Carte-
sian grids and (2) explicit time stepping (using 3-stage Runge–Kutta which does not require any sub-iterations or matrix
inversion).

The data does indicate a weak correlation with total domain connectivity time and total number of grid points. The nature
of partitioning and grid overlap strongly contribute to the performance of domain connectivity procedures. Therefore it is
often difficult to identify global trends between CPU time and number of grid points. The computational overhead metric
(calculated as fraction of domain connectivity time/total CPU time) shows encouraging trends and is less than 10% for all
test cases.



Table 2
Performance data for the four test cases presented in the paper. Detailed timings are provided for the domain connectivity procedure. The key for domain
connectivity timings are as follows, NB: near-body, OB: off-body, nbpr: near-body preprocessing time, nbdc: near-body to near-body connectivity time, obpr. off-
body preprocessing time, obdc: near-body to off-body connectivity time, interp: data interpolation time

Case Number of
processors

Number of grid nodes Number of fringes
and holes

Time taken in
seconds
per time step for
overset grid
assembly

Time taken
in seconds
for one time
step of flow
solution

Computational
overhead

NB OB NB OB NB OB

Slotted airfoil 4 128,327 263,169 Fringes: 12,431
holes: 1900

Fringes: 9346
holes: 4745

nbpr: 0.54 17.63 2.12 9.26%
nbdc: 1.14
obpr: 0.005
obdc: 0.32
interp: 0.01
total: 2.015

1/4 scaled V-
22 (TRAM)

12 763,965 5,120,710 Fringes: 35,586
holes: 0

Fringes: 33,069
holes: 1725

nbpr: 0.28 49.31 3.38 1.5%
nbdc: 0.25
obpr: 0.005
obdc: 0.25
interp: 0.02
total: 0.805

NACA 0015 16 2,470,737 5,649,812 Fringes:
147,569
holes: 0

Fringes:
404,526
holes: 50,964

nbpr: 0.70 44.43 3.54 5.05%
nbdc: 0.14
obpr: 0.01
obdc: 1.66
interp: 0.04
total: 2.55

Blackhawk
UH-60

32 457,5256 28,007,666 Fringes: 85,378
holes: 0

Fringes:
264,771
holes: 7450

nbpr: 0.53 101.48 7.16 3.15%
nbdc: 1.11
obpr: 0.014
obdc: 1.81
interp: 0.06
total: 3.52

4720 J. Sitaraman et al. / Journal of Computational Physics 229 (2010) 4703–4723
5. Resolution capacity modification

As stated in Section 2.5, the nominal resolution capacity that determines the solution quality at a given point in a given
grid is based on the cell volume. For a cell, it is the volume of that cell, and for a point, it is the average of the volumes of the
cells which share that point. In a purely mathematical sense, this provides the best solution by selecting closely spaced
points over more sparsely spaced points. However, physically, the points with the closest spacing may not be the points
which should be solved. Two particular instances were observed where the default selection process was not selecting
the correct points. Both can be illustrated by the slotted airfoil case presented in Section 3.4.

The first case is near a solid wall. For overset grids, only the solver assigned to the grid block which contains the wall has
information that the wall is present. Processors solving background grid blocks do not have the wall information from the
near-body grids, and each near-body grid does not have information about walls in other near-body grids. Wall distance is
important for turbulence modeling in particular, so it is important that points near a solid wall are solved in the grid which
contains the wall.

In the second case, a wall may not be involved but an ‘‘island” can form where one grid is locally more refined than an-
other. Computationally, it may be important for solution points to be contiguous rather than being broken up by receiver
points which get data from other processors. Localized areas of dense points normally occur because of the proximity of
a wall, so often the first issue is the cause of the second.

In order to address these issues, a wall correction scheme was investigated. A scaling factor n was applied to artificially
promote the resolution capacity of cells near a solid wall. The scaling factor is identically 1.0 for grid blocks which do not
contain any wall nodes and varies from 0 to 1 in grid blocks which do have wall nodes. This is performed by calculating
n for all nodes, and then non-dimensionalizing by nmax for the grid block so all values of n fall between 0 and 1.

The first method was a linear scale factor. As the resolution capacity is being calculated, the distance to the nearest wall
node, xw is calculated, and the scale factor was determined simply as
n ¼ xw ð1Þ
For this case, the nmax is the distance of the boundary node farthest from a wall in the grid block. A failure mode of this
approach is seen with the AGARD A2 airfoil grids. The grid for the main airfoil body extends far beyond the trailing edge
compared to the grids for the flap and slat. Since the scale factor is relative, the farthest point from the wall, the non-dimen-
sionalized n is smaller for the main body than for the flap and slat for the same distance from the wall.



Fig. 21. AGARD A2 airfoil grids with flap and slat fully retracted after domain connectivity operation with wall distance correction. The thick lines represent
the boundaries of the grids before blanking. Grid scattering and formation of islands noted in Fig. 16 are observed to be substantially mitigated.
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For the general case where grids can be heterogeneous and can contain complex shapes or protuberances, n should reflect
the proximity to the wall relative to the local vicinity of the grid. To accomplish this, for each point, the shortest distance to
an outer boundary xo is also determined. With both the minimum distances to a wall and to an outer boundary, n was deter-
mined as
n ¼ xw

xw þ xo

� �2

ð2Þ
Although the nearest wall point and the nearest outer point are not generally along the same line, this ensures that n ap-
proaches 0 near the wall and approaches 1 near the outer boundary. And for the case of the airfoil body mentioned above, the
resolution capacity of points near the body are not excessively modified because the grid extends so far beyond the trailing
edge. For this investigation, the n values are still divided by nmax even though it is close to unity. This ensures that the max-
imum scale factor for points at the outer boundary of grid blocks is exactly 1 to match that of background grid blocks. By
squaring the term in parentheses in Eq. (2), points near the wall are assigned a very small resolution capacity, so they are
solved in the local grid with an appropriate wall distance for the turbulence model.

The grids from Fig. 16 are shown with the wall distance correction in Fig. 21. Comparing the two figures, the effect of wall
distance is clear. The small ‘‘island” above the slat is eliminated as the points in the slat grid are promoted to higher reso-
lution capacity in the vicinity of the slat surface. The slat grid extends around the bottom of the slat and transitions to the
airfoil body grid at the gap. Similarly, for the transition to the flap grid on the lower surface, the airfoil body grid extends to
the gap and the flap grid is used for points through the trailing edge of the flap without the ‘‘island” of airfoil body grid in
Fig. 16. The airfoil body grid is very dense along its centerline behind the trailing edge of the airfoil body, but the transition
from the airfoil body grid to the flap grid on the upper surface of the flap is still smooth, with enough points retained in the
flap grid near the surface to resolve the boundary layer for this high Reynolds number flow. This is a particularly challenging
case because both bodies are in such close proximity and the upper surface of the flap is so near a dense region of the airfoil
body grid.

Note that the correction represented in Eq. (2) is intended to be a proof of concept only and has not been evaluated be-
yond the AGARD A2 test case. It was investigated to determine if the cell and point resolution capacities could be modified in
a simple way to obtain a computationally better selection of grid points. As the code matures and the base of users and appli-
cations increases, a more appropriate algorithm may be developed.

6. Summary and conclusions

The potential of the multi-solver paradigm and automated domain connectivity in resolving flow physics in unsteady
problems which involve moving bodies has been demonstrated. The domain-connectivity module (PUNDIT) shows encour-
aging trends in obtaining optimal domain connectivity, improving interpolation accuracy and automated parallel execution.
The improvements that PUNDIT brings over the existing domain connectivity technology can be categorized into three areas:

1. Automation: There is no user input or intervention required for PUNDIT, which makes it completely automated and shows
potential for large productivity gains. Existing technologies often require high-levels of user expertise because of the need
to perform explicit hole cutting.

2. Scalability: None of the existing technologies provides scalable execution for all the domain connectivity procedures. We
have demonstrated linear-scalability of execution if at least 1 million points are available per processor. However, this is
still quite short of meeting future production demands of highly-scalable execution. The main reason for the drop-off in
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scalability is because of solver-based mesh-partitioning, which is non-optimal for domain connectivity. This is because
only a subset of processors will have intensive domain connectivity operations as the grid system becomes more finely
partitioned, leaving the overall solution procedure unbalanced. Algorithms for redistribution of search load on the fly are
envisioned to mitigate the load imbalance.

3. Arbitrary element types and relative motion capability: PUNDIT supports multiple solvers (both intra-code and inter-code)
and multiple mesh types and performs all the domain connectivity operations in a distributed computing platform for
moving body problems. Existing technologies support many of these features but none of them support all of the features
together.

Following are the summaries of the specific observations that pertain to the various application test cases that were
studied:

1. The NACA0015 test case shows the capability of adaptive meshes and high-order solvers to preserve the coherence of vor-
tex structures. Comparison with experimental data shows under-prediction of peak swirl velocity magnitudes. However
these are attributed to the lift deficiency observed from the pressure distributions. Comparison with experimental data is
likely to improve with the inclusion of wind-tunnel wall modeling.

2. The AGARD A2 airfoil-flap-slat test case shows the ability of PUNDIT to obtain optimal domain connectivity and facilitate
smooth solution interpolation. Excellent correlation obtained with experimental data for the pressure distributions pro-
vides validation for the methodology.

3. Studies for the TRAM rotor show the capability of automated mesh adaptation and domain connectivity solution for a
rotorcraft problem in a parallel processing environment.

4. Application to the aeroelastic simulation of a UH-60A helicopter further illustrates the capability of dynamic domain con-
nectivity management in a parallel processing environment with reasonable cost.

5. Promoting the resolution capacity of grid points near solid walls can be used to obtain a more computationally effective
grid. For the AGARD A2 airfoil test case, application of the wall boundary correction resulted in additional points being
retained in the grid containing the solid wall.
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